Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Unexpected conformational consequences of weak hydrogen bonds on 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.1 ${ }^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}$]octacosane monohydrate

Augusto Rivera, ${ }^{\text {a }}$ Jaime Ríos-Motta, ${ }^{\text {a }}$ Michal Dušek ${ }^{\text {b }}$ and Markéta Jarošováb ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Química, Universidad Nacional de Colombia, Bogotá, AA 14490, Colombia, and ${ }^{\text {b }}$ Institute of Physics, Na Slovance 2, 18221 Prague 8, Czech Republic
Correspondence e-mail: ariverau@unal.edu.co

Received 25 February 2010
Accepted 19 March 2010
Online 27 March 2010

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$, the organic molecule crystallizes with one water molecule located within the molecular cavity of the octaaza macrocycle. The two molecules are linked via two weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The assembly has noncrystallographic C_{2} axial symmetry.

Comment

Polyaza macrocyclic compounds with tetrahedrally arranged nitrogen lone-pair orbitals (LPOs) have been exploited for complexation with ions (Mazloum et al., 2002). Some of these compounds have attracted intense attention due to their molecular diamond lattice conformation. In fact, both theoretical (Galasso et al., 2001) and experimental studies (Dale et al., 1991, 1992) of the molecular structures and spectroscopic properties of this class of compounds have been reported. The results of these studies revealed that $1,3,7,9,13,15,19,21$-octaazapentacyclo[19.3.1.1 $1^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}$]octacosane exists in two conformations, one in which the eight N atoms are diequatorially substituted ($D_{2 d}$ symmetry) and one with an equatorial-axial substitution in each 1,3-diazane ring (S_{4} symmetry). Density functional theory (DFT) calculations (Galasso et al., 2001) showed that the S_{4} conformer is more stable than the $D_{2 d}$ conformer by $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$ ($1 \mathrm{kcal} \mathrm{mol}^{-1}=4.184 \mathrm{~kJ} \mathrm{~mol}^{-1}$), due to dipole-dipole repulsion between the axial lone pairs of the N atoms. A previous X-ray structural investigation of a 1:1 complex of 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.1 $\left.1^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}\right]$ octacosane and benzene showed that the 16 -membered pentacyclooctaaza ring exists in a less symmetric but more stable conformation (Murray-Rust, 1975). However, the most favourable conformation is avoided when 1,3,7,9,13,15,19,21-
octaazapentacyclo[19.3.1.1 $1^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}$]octacosane crystallizes as a $1: 2$ dichloromethane complex (Dale et al., 1991), where the $D_{2 d}$ conformation exhibits a syn-axial orientation of the N atom lone pairs, showing the so-called rabbit-ear effect (Hutchins et al., 1968). Repulsion is avoided due to the presence of intermolecular interactions between the N atoms and the H atoms of the dichloromethane molecules (Dale et al., 1991).

(I)

In recent years, we have used these classes of polycyclic polyaza compounds, as preformed Mannich reagents, in the synthesis of several heterocyclic systems (Rivera et al., 2005; Rivera \& Maldonado, 2006). During these studies, crystals of the title monohydrate, (I), were obtained when the reaction was carried out according to the usual technique, i.e. mixed aqueous formaldehyde and propane-1,3-diamine (Krassig, 1956). A broad band with a maximum at about $3400 \mathrm{~cm}^{-1}$ is observed in the IR spectrum, which is attributed to water molecules. Although selective inclusion of nonprotic solvents such as benzene, dioxane and dichloromethane by 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.1 $\left.{ }^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}\right]$ octacosane is known (Dale et al., 1991), where host-guest association determines the conformational preference of the organic molecule, as far as we are aware this is the first example of a complex of this macrocycle with a protic solvent. The current X-ray crystal structure analysis confirms that this

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.

Figure 2
The packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
solid is a $1: 1$ complex of the $1,3,7,9,13,15,19,21$-octaazapentacyclo[19.3.1.1 ${ }^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}$]octacosane macrocycle and a water molecule. Only two of the eight N atoms of the macrocycle are involved in hydrogen bonding with the molecule of water. Our results indicate that the title macrocycle affords efficient binding affinity for both apolar and polar solvents due to the chelation effect, and could thus form complexes with metallic cations (Mazloum et al., 2002).

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. All atoms of both the organic molecule and the water molecule are located on general positions. Selected angles and bond lengths are listed in Table 1. Careful examination of the crystal structure of the adduct shows that the 1,3-diazane rings adopt two different conformations, which are only controlled by the binding of the water molecule. One of the conformations is hydrogen bonded and the other is not (Fig. 1). Our crystal structure analysis results show that the hydrogen-bond interactions in (I) do not generate a large change in the tetrahedral character of the N -atom lone pairs. The marked tetrahedral character of the N atoms in (I) is nicely illustrated by the sums of the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles, which range from 330.2 to 336.4°. The individual $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles in (I) are around 109.2 (1)-113.8 (1) ${ }^{\circ}$ (Table 1), close to normal tetrahedral bond angles. Nevertheless, as can be seen in Table 1, the smallest values are for the N atoms involved in hydrogen bonding (N 1 and N 5). This crystal structure analysis also shows that the aminal $\mathrm{C}-\mathrm{N}$ bond lengths for N atoms neighbouring N atoms involved in hydrogen-bond interactions are shorter than the other bonds.

The presence of hydrogen bonds to atoms N1 and N5 might enhance the structural consequences, and thus the formation of this class of intermolecular interactions strongly influences the conformation of the molecule, forming the less stable configuration with a 1,3-diaxial disposition of the nitrogen lone pairs and forcing the hexahydropyrimidine ring to adopt a diequatorial disubstitution. This can be explained on the basis of a preference for the conformation where the lone pair is located in the proximity of the electrostatic dipole-dipole interaction, the so-called reverse anomeric effect (Grein \& Deslongchamps, 1992). On the other hand, for the other two rings, the stable conformation is conserved. The ring structure is approximately C_{2} symmetric with a twofold axis passing through atom O1. On the basis of our results, we propose the existence of a third conformation for the organic molecule of (I).

Fig. 2 shows the crystal packing in (I), with the channels extending along the a axis and accommodating the water molecules. Each channel is composed of two symmetryequivalent positions of the organic molecule. No remarkable intermolecular contacts exist in the structure.

Experimental

To a stirred solution of formaldehyde $(16.4 \mathrm{ml}, 0.22 \mathrm{mmol}, 40 \%$ in ethanol), propane-1,3-diamine ($8 \mathrm{ml}, 0.11 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(0.25 \mathrm{M} ; 0.1 \mathrm{ml}, 0.02 \mathrm{mmol})$ were added dropwise slowly. After stirring for 12 h at room temperature, the solvent was removed at reduced pressure. Recrystallization of the resulting solid from ethanol-water $(80: 20 \mathrm{v} / \mathrm{v})$ gave diffraction quality crystals of the title compound, (I) (m.p. 438-439 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=410.6$
Monoclinic, $P 2_{1} / c$
$a=12.4858(2) \AA$
$b=18.8016(3) \AA$
$c=9.8354(2) \AA$
$\beta=96.6010(13)^{\circ}$

$$
\begin{aligned}
& V=2293.58(7) \AA^{3} \\
& Z=4 \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \mu=0.61 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& 0.43 \times 0.37 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

$\beta=96.6010(13)^{\circ}$

Data collection

Oxford Xcalibur diffractometer
with an Atlas detector (Gemini Ultra Cu)
Absorption correction: multi-scan
(CrysAlis Pro; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.716, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.125$
$S=2.73$
4010 reflections
268 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.18$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.16$ e $^{-3}$

All H atoms were discernible in difference Fourier maps and could be refined to a reasonable geometry. According to common practice, H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were refined isotropically.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

N1-C1			
N1-C2	$1.4630(13)$	N5-C10	$1.4606(13)$
N1-C20	$1.4739(14)$	N5-C11	$1.4673(14)$
N2-C1	$1.4663(15)$	N5-C12	$1.4697(13)$
N2-C4	$1.4448(14)$	N6-C11	$1.4443(13)$
N2-C5	$1.4611(14)$	N6-C14	$1.4611(13)$
N3-C5	$1.4524(13)$	N6-C15	$1.4499(14)$
N3-C6	$1.4596(13)$	N7-C15	$1.4574(13)$
N3-C7	$1.4558(13)$	N7-C16	$1.4484(14)$
N4-C6	$1.4659(14)$	N7-C17	$1.4665(15)$
N4-C9	$1.4724(13)$	N8-C16	$1.4761(14)$
N4-C10	$1.4613(13)$	N8-C19	$1.4631(15)$
C1-N1-C2	$1.4526(14)$		
C1-N1-C20	$110.30(9)$	C10-N5-C11	$110.07(8)$
C2-N1-C20	$110.48(9)$	C10-N5-C12	$109.20(8)$
C1-N2-C4	$109.39(8)$	C11-N5-C12	$110.11(8)$
C1-N2-C5	$110.42(8)$	C11-N6-C14	$110.63(8)$
C4-N2-C5	$112.89(8)$	C11-N6-C15	$112.88(8)$
C5-N3-C6	$112.94(8)$	C14-N6-C15	$112.85(8)$
C5-N3-C7	$112.24(8)$	C15-N7-C16	$112.24(8)$
C6-N3-C7	$113.41(8)$	C15-N7-C17	$113.75(8)$
C6-N4-C9	$109.85(8)$	C16-N7-C17	$110.15(8)$
C6-N4-C10	$109.71(8)$	C16-N8-C19	$109.39(9)$
C9-N4-C10	$111.36(8)$	C16-N8-C20	$110.79(9)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O $\cdots \mathrm{N} 1$	$0.886(16)$	$2.248(16)$	$3.1226(12)$	$169.3(12)$
O1-H1P $\cdots \mathrm{N} 5$	$0.890(16)$	$2.226(15)$	$3.1008(12)$	$167.4(15)$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure:

JANA2006 (Petřiček et al., 2006); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: JANA2006.

The authors acknowledge the Dirección de Investigaciones Sede Bogotá (DIB) of the Universidad Nacional de Colombia for financial support, and the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Sciences of the Czech Republic.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3369). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.
Dale, J., Rise, F., Rømming, C. \& Sigvartsen, T. (1992). Acta Chem. Scand. 46, 1200-1203.
Dale, J., Rømming, C. \& Sigvartsen, T. (1991). Acta Chem. Scand. 45, 10711075.

Galasso, V., Benedetti, F., Jones, D. \& Modelli, A. (2001). Int J. Quantum Chem. 84, 630-641.
Grein, F. \& Deslongchamps, P. (1992). Can. J. Chem. 70, 1562-1572.
Hutchins, R. O., Kopp, L. D. \& Eliel, E. L. (1968). J. Am. Chem. Soc. 90, $7174-$ 7175.

Krassig, H. (1956). Makromol. Chem. 17, 77-89.
Mazloum, M., Niassay, M. S. \& Amini, M. K. (2002). Sens. Actuators B Chem. 82, 259-264.
Murray-Rust, P. (1975). Acta Cryst. B31, 583-584.
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Petříček, V., Dušek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.
Rivera, A. \& Maldonado, M. (2006). Tetrahedron Lett. 47, 7467-7471.
Rivera, A., Ríos-Motta, J., Quevedo, R. \& Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105-115.

